Block-Jacobi Methods with Newton-Steps and Non-unitary Joint Matrix Diagonalization
نویسندگان
چکیده
In this work, we consider block-Jacobi methods with Newton steps in each subspace search and prove their local quadratic convergence to a local minimum with non-degenerate Hessian under some orthogonality assumptions on the search directions. Moreover, such a method is exemplified for non-unitary joint matrix diagonalization, where we present a block-Jacobi-type method on the oblique manifold with guaranteed local quadratic convergence.
منابع مشابه
Simple LU and QR Based Non-orthogonal Matrix Joint Diagonalization
A class of simple Jacobi-type algorithms for non-orthogonal matrix joint diagonalization based on the LU or QR factorization is introduced. By appropriate parametrization of the underlying manifolds, i.e. using triangular and orthogonal Jacobi matrices we replace a high dimensional minimization problem by a sequence of simple one dimensional minimization problems. In addition, a new scale-invar...
متن کاملPivot Selection Strategies in Jacobi Joint Block-Diagonalization
A common problem in independent component analysis after prewhitening is to optimize some contrast on the orthogonal or unitary group. A popular approach is to optimize the contrast only with respect to a single angle (Givens rotation) and to iterate this procedure. In this paper we discuss the choice of the sequence of rotations for such so-called Jacobi-based techniques, in the context of joi...
متن کاملJoint diagonalization via subspace fitting techniques
Joint diagonalization problems of Hermitian or non-Hermitian matrices occur as the final parameter estimation step in several blind source separation problems such as ACMA, JADE, PARAFAC, and SOBI. Previous approaches have been Jacobi iteration schemes and alternating projections. Here we show how the joint diagonalization problem can be formulated as a (weighted) subspace fitting problem so th...
متن کاملA Block-Jacobi Algorithm for Non-Symmetric Joint Diagonalization of Matrices
This paper studies the problem of Non-symmetric Joint Diagonalization (NsJD) of matrices, namely, jointly diagonalizing a set of complex matrices by one matrix multiplication from the left and one multiplication with possibly another matrix from the right. In order to avoid ambiguities in the solutions, these two matrices are restricted to lie in the complex oblique manifold. We derive a necess...
متن کاملA Fast Algorithm for Joint Diagonalization with Non-orthogonal Transformations and its Application to Blind Source Separation
A new efficient algorithm is presented for joint diagonalization of several matrices. The algorithm is based on the Frobenius-norm formulation of the joint diagonalization problem, and addresses diagonalization with a general, non-orthogonal transformation. The iterative scheme of the algorithm is based on a multiplicative update which ensures the invertibility of the diagonalizer. The algorith...
متن کامل